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A Shamanskii-Like Acceleration Scheme for 
Nonlinear Equations at Singular Roots* 

By C. T. Kelley 

Abstract. A variation of the Shamanskii method is used to obtain a superlinearly convergent 
method for a class of nonlinear equations having singular Frechet derivative at the root. The 
cost of a superlinear step is one derivative evaluation and two function evaluations. 

1. Introduction. Nonlinear equations of the form F(x) = 0 are often solved by 
variations of Newton's method. If F is a sufficiently smooth map from a Banach 
space E into itself and x* e E is a solution to 

(1.1) F(x*) = 0, 

then the Newton sequence, 

(1.2) Xn+1 = Xn-F'(Xn) F(Xn) 

will converge quadratically to x* if the initial iterate xo is sufficiently near x* and 
F'(x*) is nonsingular [10], [17], [23]. Evaluation of the derivative and solution of the 
linear equation for the step, s(xn)= -F(xn)-lF(xn), may be very expensive. An 
alternative approach that almost entirely avoids this cost is the chord method. Here 
we only compute F'(xo); the iterates are 

(1.3) Xn+1 = Xn-F'(Xo) F(Xn) 

For a finite-dimensional problem, the Jacobian matrix need only be factored once. 
Hence the cost of each iterate is very low. The convergence rate, however, is 
degraded to linear [10], [17], [23]. In fact, for xo sufficiently near x* and F'(x*) 
nonsingular, we have, for some KC > 0, 

(1.4) II Xn+1 - * || <_ KcIxo -X*1I IlXn - Xl. 

We observe, directly from (1.4), that the rate of linear convergence improves as the 
initial guess gets better. This motivates a method that lies between the chord method 
and Newton's method. This method, due originally to Shamanskii [28], and analyzed 
in detail by others as well [1], [23], [32], proceeds as follows: Given an integer m and 
an initial iterate xo, we move from xn to xn+1 through an intermediate sequence 
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{ y,,np }p1 which is one Newton iterate followed by several chord iterates, 

Yn 1, = xn,- F'( xn ) F( x ) X 

(1.5) Yn+l = Yn,p - F(xn)1F(ynp), 1 < p < m-1, 

Xn+1 = Yn,m 

Note that when m = 1, Newton's method results, and when m = x, we obtain 
the chord method. If F'(x*) is nonsingular and xo is sufficiently near x*, the 
convergence of the Shamanskii method is m-step q-superlinear with q-order at least 
m + 1. This means that there is Ks > O, such that 

(1 .6) || Xn+1 -X * || < KsllXn - X* 11mx 
The convergence rate, (1.6), for the Shamanskii method is an easy consequence of 

(1.4) and the quadratic convergence for Newton's method. In fact, if xo is suffi- 
ciently near x * there is KN > 0, such that 

(1.7) yn,j - x - 1 KN XKN - x* 2- 

Repeated applications of (1.4) imply that, for 1 < p < m - 1, 

(1.8) |yn,p+1 - x* KKK4 *xn1-x1pl 

(1.8) gives (1.6) with Ks = Km- 'KN. 
If, instead of the Shamanskii method, one does m complete Newton steps, the 

overall improvement in the accuracy is 
2m 

(1.9) ||Xn+m - X*jj< Kmx - xn * 

The tradeoff, therefore, is between the faster convergence of Newton's method and 
the reduced cost in derivative evaluations and matrix factorizations for the 
Shamanskii method. This situation was analyzed in [1], for several methods, includ- 
ing the Shamanskii method, by Brent. He found that, if one measures work in terms 
of function evaluations and counts a Jacobian evaluation as M function evaluations, 
where M < oo is the dimension of E, the Shamanskii method is always more 
efficient than Newton's method. Moreover, the relative performance of the 
Shamanskii method improves as the dimension increases if the optimal value of m is 
chosen 

The purpose of the present paper is consideration of these issues if F'(x*) is 
singular. Before discussing the specific new results, we will give some known facts 
about Newton and Newton-like methods for problems having singular derivative at 
the root. We will call such problems singular, and call problems with F'(x*) 
invertible nonsingular. 

We begin by considering a simple problem in one variable. Let f E Ck+2(R) 
satisfy 

(1.10) f (X*) = fX(X*) = *** f(k)(X*) = :0 f (k+l)(X*) 

It is easy to show that if the initial guess, xo, is sufficiently near, but not equal to, 
x *, the Newton iterates, { x n }, will converge linearly to x * with an asymptotic linear 
ratio of k/(k + 1). This means that 

(1.11) lim 1Xn+1 - X*I k 
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In this situation, quadratic convergence may be restored by modifying the Newton 
step, [31]. The following sequence of iterates will converge quadratically to x*, if the 
initial guess is in a sufficiently small deleted neighborhood of x*: 

(1.12) Xn+1= xn-(k + 1)f(xn)/f '(Xn) n > 0. 

For Newton's method, therefore, linear convergence will be the best one can hope 
for, but it is possible to recover superlinear convergence by modifying the iterates in 
a simple way. 

Methods that do not reevaluate the derivative at each step, like the chord and 
Shamanskii methods, do not fare as well. For the chord method, sublinear conver- 
gence should be expected, [12], [8]. Hence, the chord method is not a reasonable 
approach to these problems. The Shamanskii method will, as we shall see, converge 
linearly at an asymptotic linear rate that depends both on the order, k, of the root 
and the number m. This linear rate, which we denote by rk,m, is given by the 
recurrence relation 

(1.13) rkl = k/(k + 1), rkiP?1 = (i - rk, ,/(k + 1))rk,p. 

We prove this in Section 2. We will discuss the approximate size of the linear rates, 
rk,m after the statement of Theorem 1.3. 

The behavior of iterative methods applied to singular problems in more than one 
variable is more complex [2], [4]-[9], [12]-[16], [19]-[21], [24], [25], [29], [30]. To 
begin with, it is no longer the case that F'(x) remains nonsingular in a deleted 
neighborhood of the root. Instead, F'(x) is generally singular for x in a collection of 
codimension one smooth manifolds passing through x*. A consequence of this is 
that the set of initial iterates that produce convergence is not a deleted neighborhood 
of x*, but a region that avoids the set on which F'(x) is singular. The construction 
of such regions is an important part of an analysis of convergence. 

The issue of computation of rates of convergence is also made more complex for 
higher-dimensional problems. It is not the case that the Newton iterates must 
converge at a linear rate of the form k/(k + 1) [15], [25]. In fact, examples have 
been created for which the Newton iterates diverge for almost every initial guess [15]. 
Most work in this area has avoided this strange behavior by imposing some structure 
on the nature of the singularity. We do this later in this section. 

For many problems [2], [4]-[7], [9], [12]-[16], [24], the rates of convergence for 
Newton's method are of the form k/(k + 1). A natural question is whether the 
acceleration method (1.12) will recover quadratic convergence, as it does for prob- 
lems in one variable. The answer is no, because the modified iterate, as we shall see 
shortly, may leave the region of valid initial guesses, and there will be no guarantee 
that subsequent iterates will be defined. Designing acceleration schemes is com- 
plicated for this reason [6], [7], [9], [12], [16], [19]-[21], [29], [30]. 

In this paper we give regions of valid initial iterates and compute rates of 
convergence for the Shamanskii method for a class of singular problems. We also 
derive a new acceleration strategy, based on the Shamanskii method, that is more 
efficient than the existing methods. Before stating the main results, we establish 
some notation and discuss the nature of the singularities of interest. 
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We assume that F'(x *) has finite-dimensional null space N and range X with 
E = N D X. Let PN denote a projection onto N parallel to X and let Px = I - PN. 
We will let F = F'(x *). Often F will be considered as a map on X alone; when this 
is done, F is invertible and we let F denote that inverse. Formally, F 'F'(x*) = 

F'(x*)F-l = PX. 
As we said before, it is not always the case that the asymptotic linear rate of 

convergence for Newton's method for singular problems is of the form k/(k + 1). 
We make an assumption on the singularity to insure that this is the case. This 
assumption, called "regularity" in [12]-[16] and also used in [7], [21], [27], is 
somewhat technical. After stating the assumption and giving the theorem on 
Newton's method that requires that assumption, we discuss its geometric meaning 
and its significance in the design of acceleration methods. The assumption is: 

Let k be the least integer such that (we assume that 

(R) F E= C(k 3)) PNF (k X)(Zl,. . ., Zk+l1) O for some {zj} 
c E. There is o0 E N, such that the operator H, defined on 
N by H - PNF(k+1)(X *)(4pk pN), is invertible. 

The integer k is sometimes called the order of the singularity [12]-[16], [21]. 
One consequence of assumption (R) is the geometric statement that the set, M, on 

which F'(x ) is singular, passes through x * transverse to the affine set { x I x = x * + 
e, e e N }. Assumption (R) has also, in the case where k = 1 and dim(N) = 1, been 
used to argue that x* is an isolated root of F, [18]. Further discussion of the 
geometric consequences of (R) must await the description of the behavior of the 
Newton sequence. 

We let P0 denote a projection in N onto the one-dimensional subspace spanned by 

40; we let 3PN = PN - PO. For convenience we let x = x - x*. We let fPk(x) denote 
any term that is Q( 11Ik). For p, 0, and q positive we define a cone in E, W(p, 0, q), 
by 

(1.14) W(p, ,') = {xI10 | 1 < p, IIPXII < OIIPNXII, II3PNXII < *IIPNXII} 

With this notation in mind, we quote as a theorem a combination of results from 

[2], [4]-[7], [9], [121-[16], [24]. 

THEOREM 1.1. Assume that (R) holds. Then there exists p, 0, and i such that for all 
x E W( p, i1), F'(x) -1 exists and satisfies 

(1.15) F'(x)' = flk(x). 

In addition, for p, 0, and q sufficiently small and xo E W(p, 9,rq), the Newton 
sequence, 

(1.16) Xn+1 = Xn -F'(Xn )1F(Xn), n > O, 

is in W( p, 0, ij) for all n and converges to x * with rates given by 

- k 
(1.17) PNXfl?l = k + 1 PNCn + PN(nfll1(Xn) + f2(Xn)) 

+PX(n#9f2(xn) + 33(XJ)), 

where O., = PIIXnII/IIPN,nII and lim. - oo = 0. For n > 1, O2 = i1(x.). 
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The above theorem is much more than the simple statement that the Newton 
iterates converge to x* with an asymptotic linear rate of k/(k + 1). Equation (1.15) 
is a restriction on the size of F'(x)-l for x E W(p, 9, ); this keeps the Newton step 
from becoming so large that the iterates leave W(p, 9, 71) Equation (1.17) describes 
the limiting behavior of 1IRnII and On. This in turn leads to important information on 
the path taken by the Newton iterates. This path becomes tangential to the affine 
space { x E E x = x* + e, e E N } in a better than parabolic way. We have 

(1.18) lim ||PXX n 11/1 IPNX n112 = 0. 
n - oc 

Therefore, the direction of the errors, x,w rapidly becomes dominated by N, and xn 
moves farther away in direction from the set on which F'(x) is singular. 

The above geometric properties play an important role in acceleration methods 
which recover superlinear convergence. If we use a modified Newton step, as one 
would for the one-variable case, (1.12), the modified iterate could well leave 
W( A ,,) , as there is no guarantee that II PNn+lll and IlPxx?lll would not be 
roughly the same size. The solution is to take an intermediate Newton iterate before 
the modified step. The properties of the direction of Jin allow us to still use a 
modified step similar to (1.12) and take into account the requirement that the 
iterates remain in W(p, 9, ). This was done in [21]. To state this result, we write the 
Newton step as 

(1.19) s (X) = -F (x) F(x). 
THEOREM 1.2. Assume that (R) holds. Let W(P5 9, i) be as in Theorem 1.1, and let 

C # 0 and a E (0, 1) be given. Then, if xo E W(p, 9, ,q) for p, 9, and 7q sufficiently 
small, and yn + 1 and xn+ 1 are given, for n > 0, by 

(1.20) Yn+1 = Xn + s N(x) 

(1.21) xn+1 = Yn+1 +(k + 1)sN(yn+l) - [CjsjN(yn+?)ias N(yn+l)], 

then the sequence {x"} is defined, remains in W(, P, i), and converges to x* 
q-superlinearly with q-order 1 + a. 

The algorithm given by Theorem 1.2 provides two-step superlinear convergence. 
The cost of a superlinear step is two derivative evaluations. It is appropriate here to 
discuss the geometric aspects of Theorem 1.2 in order to explain the purpose of the 
intermediate step, (1.20), to explain the modified step, (1.21), and to give some 
insight into the choice of C and a. As one can see from Theorem 1.1, a Newton step 
has the effect of further reducing the weight of the X component of x; after taking 
such a step, the result of (1.12) might well leave W(p, 9, ii), but would not miss by 
much. Hence, the additional correction term in the brackets in (1.21) can force the 
direction of n?+ to be close to that of x". This is why x,+1 remains in W(p, q, i). A 
similar analysis will be applied to the Shamanskii method in the next section. Now, 
if C is taken too small, or a too large, this correction may not be enough to force 
x, +1 EW( P, 9, 71) On the other hand, if C is too large, or a too small, the sequence 
{x,}, while in W(p, ,), will converge more slowly to x* than a combination of 
smaller C or larger a. Balancing this is somewhat problem-dependent, but we have 
found that C = 1 and a = .9 are generally good choices. 
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The main result of this paper is that in (1.21), one does not need to compute the 
derivative, F'(yn +,) but can use, instead of the Newton step, a Shamanskii step. 
This new method is more efficient, even though an extra initial Newton iterate must 
be taken and a smaller value of a used. Our results also describe the behavior of the 
Shamanskii method when not modified for superlinear convergence. 

For x such that F'(x)1 exists and y in E, we write the Shamanskii step as 

(1.22) ss(x, y) = -F'(x) 1F(y). 

When no confusion can result, we will suppress the x-dependence in (1.22). This will 
occur when x is considered as fixed and we wish to analyze the step for various 
values of y. We prove two results in Section 2. The first is a description of the 
behavior of the unmodified Shamanskii method for singular problems satisfying (R). 
We will denote by S(m) the Shamanskii method with a given derivative used m times 
(so S(1) is Newton's method, etc.). 

THEOREM 1.3. Assume that (R) holds and let W(p, 0,1) be as in Theorem 1.1. 
Then, for a given m, there exist p, 0, and r1 such that if xo E W(p, 0, ,) and {xJ 

are the iterates given by S(m), the xn9s are in W(p, 0, i1) and converge linearly to x*. 
The linear rate is given by 

(1.23) lim 11n+1111n1l = rk, 
tf -*00 

where rk m is given by (1.13). 

We shall see in the proof that (1.8) does not hold in general, but does if k = 1. In 
general, all that one can guarantee is that the tract of the iterates is roughly 
parabolic. This is the only difference in the geometry that will be important later on. 
This fact will make the proof of the acceleration result a bit different from that in 
[21]. 

For finite-dimensional problems we may compare the result in Theorem 1.3 with 
the results in [1] as far as the best choice of m goes. If one views (1.13) as a 
differential equation for rk,m as a function of m, one finds that rk,m may be 
approximated as 

(1.24) rk,m (km/(k + 1) + 1) l/k (m + 

Then, if one follows [1] and defines efficiency as the ratio, 

(1.25) eff = Ilog(linear rate) I _ log(1 + m) 
work k(m +M)~ 

Here M would be the dimension of E if we measured work in terms of function 
evaluations. Alternatively, we can regard M as the ratio of the work required to 
evaluate and factor the Jacobian matrix to that required to evaluate F and solve a 
factored system. So efficiency is roughly maximized at an m that is independent of k 
and is the same as found in [1] for regular problems. While this is not exactly the 
case, we have found the optimal m for regular problems to be very close to the 
optimal m for the singular problems. For example, if M = 10, the optimal m for 
regular problems is 7, for singular problems we found the optimal m by inspection 
for values of k between 1 and 20. For k = 1 the optimal m was 7; for 2 < k < 20 
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the optimal m was 6. For larger M the variation was somewhat larger. For 
M = 100, the optimal m for regular problems was 37; for the singular problems, the 
optimal m ranged from 39 for k = I to 35 for k > 8. 

The next theorem, an acceleration result, uses only m = 2. Theorem 1.4 is a more 
efficient form of Theorem 1.2 in that the derivative at the intermediate iterate need 
not be computed or factored. 

THEOREM 1.4. Assume that (R) holds and W( p, ^ ) is as in Theorem 1.1. Let xl 
be given and let x0 = x-1 + sN(x1) Consider the sequence { Xn ,} defined for n > 1, 
C # 0, a> 0, andn > 0 by 

Yn+1--- Xn + S N(Xn), 

(1.26) Xn+1 =Yn+1 +((k+ ) k?)s s(Xnf,Yn+l) 

- [CIIs5(xn, Yn+l)lDSs(Xn, Yn+J1)] 

Let a E (0, (r/ - 1)/2) if k = land let a e (0,VC -1) if k>1. Then, forp, 9, 
and -q sufficiently small and x1 E W(p, 9, ij), we have Xn E W(p, 6, ij) for all n > 0, 
and the sequence xn } converges q-superlinearly to x* with q-order 1 + a. 

In Theorem 1.4 the choice of a is more restricted than in Theorem 1.2. Using a 
slight variation of the analysis in [1], we measure efficiency as the ratio of the log of 
the q-order of convergence of the sequence xn to the number of derivative evalua- 
tions required to move from xn to xn+1. When k = 1, C = 1, and a = .6 is used for 
the new algorithm, and a = .9 for that of Theorem 1.2, the new algorithm is more 
efficient by a factor of roughly 1.46. We believe that this overrides the cost of the 
additional iterate, from x1l to xo at the beginning. This is certainly the case in the 
examples considered in Section 3. However, if k > 1, the choice of a is even more 
restricted. The algorithm in Theorem 1.4 is still slightly more efficient. If k > 1 and 
we use a = .4 for Theorem 1.4, and a = .9 for Theorem 1.2, the new algorithm is 
only more efficient by a factor of 1.04. This small increase may not offset the cost of 
the extra iterate at the start. In the examplqs we only consider problems for which 
k = 1. 

We remark that if (R) holds, k can be determined by observation of the progress 
of the iterates. In fact, if x = x + sN(xo), then k can be computed by considera- 
tion of the number R given by 

(1.27) R = IISN(Xo)I1/I1SN(Xl)II = (k + 1)/k + 90Il(x0) + 32(XO). 

For p and 0 sufficiently small, k is the nearest integer to (R - 1)-1. For the 
Shamanskii iterates we define R by 

(1.28) R = IIS N(Xo) I/ISS(Xo, yI) 11 = ((k + 1)/k) k+1 + 9o/3(xo) + /B1(x ). 

It would be more difficult to determine k from the R given in (1.28) than the one 
given in (1.27). If k is not known we would recommend taking two Newton iterates 
and using (1.27) to find it. 

In Section 2 we prove Theorems 1.3 and 1.4 by analysis of the Shamanskii step. In 
Section 3 we present some numerical examples. 
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2. Analysis of the Shamanskii Step. In this section we consider the behavior of the 
m-step Shamanskii method, S(m). We consider first one cycle; then we will use that 
analysis inductively to prove the main results. We take as the initial iterate 

x = x e W(p, 0, n) c W(p, 0, ), where W(p, 0, ) is as in Theorem 1.1. We will 
use the methods and notation developed in [7] that we have used in [8], [9], [21] for 
Newton's method and the chord method. We begin with an expansion of F'(x)-1. 

We define operators A, B, C, and D by: 

(2.1) A(x) = PXF'(x)Px, B(x) = PXF'(x)PN, 

C(X) = PNF'(x)PX, D(x) = PNF'(x)PN. 

We note that for p sufficiently small, A is an invertible operator on X. In fact, 
A (x)l= F-1 + /l(x). We let D be defined as a map on N by 

(2.2) b(x) = D(x) - C(x)A(x) 'B(x). 

Assumption (R) implies that D is an invertible map on N and that D(x) = fik(x). 
For x E W( AI ), 

(2.3) PNF'(x)l = PNb(x)l PN- C(x)A(x) ', 

PXF'(x)1 = A(x)l Px - B(x)PNF'(x)'I. 

This is far more precise than the simple statement that F'(x)'- = J3-k(x) and will be 
used to obtain detailed information on the directions of the steps. 

Proof of Theorem 1.3. We now begin the proof of Theorem 1.3. We will denote our 
initial iterate by x, and take m as given. We will denote the Shamanskii iterates from 
the starting point x by { yj }7. l. The first iterate, Yl, is a Newton iterate. Hence, by 
Theorem 1.1, we have 

(2.4) PNY1 = (k/k + 1)PN' + 0/31(X) + /2(x) and PXY1 = 0/32(x) + ?3(X). 

For yi in the Shamanskii sequence, we define pV and 0j by 

(2-5) pi = IIYAi, #j = IPXYjlllllpNYjllI 
Then e E 0,AX, Ij), for some j. Our analysis will show that { pj } is a decreasing 
sequence, that for p, 0, and q sufficiently small, the sequence { j) } remains bounded 
by ,and that Am < 6. 

We make one important observation about the relative sizes of x and yj. The 
sequence { rk,P }, defined by (1.13), is monotone decreasing, and hence, for p < m, 
has a lower bound. This will mean that terms like Pif(x) and Pi3(yj) will differ by a 
multiplicative factor that is bounded from above by 1 and away from zero from 
below. We can therefore regard yj and x to have the same order. This observation 
allows us to express all error terms in x, rather than having terms in yj for several 
different j's. 

We will denote the Shamanskii step sS(x, y) simply by sS(y), as x will be fixed 
for this part of the analysis. In order to compute this step, we require an expansion 
of F(yj). We will assume that yj is related to x as follows: 

(2 .6) PNYj= rjPNX + 6f31 (X) +f32(X) <, () <p 
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Equation (2.6) clearly holds when j = 1; here, il = k/(k + 1). We note that (2.4) 
implies that 

(2.7) I= 6fl(x) + /32(x) 

We now mention some consequences of assumption (R). To begin with, the 
leading term in the Taylor series expansion of PNF(yj) about x* is the (k + 1)st. 
This means that 

(2.8) PNF(yj) = k + 1 [D(yj) + C(Yj)]Yj + 13k+2(X). 

Hence, by (2.6), and the fact that C(x)Yj = qj3lk+l(X), 

r-k 

PNF(yJ) = k+ 1 [D(x) + C(X)]5'1 + /3k+2(X) + 913k+?(X) 

(2.9) r k 

= k +1 D(x)Yj, + /3k+2(X) + 913k+?(X)) 

As far as PxF is concerned, assumption (R) says very little explicitly. Clearly, 
however, 

(2.10) PXF(yj) = Fj1 + 2PxFt(X*)(Y;,Y;) + 133(X) 

In order to compute sS(yj), we use (2.3) and (2.10). The result is different 
depending on whether k = 1 or k > 1. We have, since F = A(x) + f31(x)Px, that 

P F(yj) = A(x)yj + 
j 

B(x)Y + #2(X) if k > 1, 
(2.11) k1) ik1 

PXF(yj) = A(x)yj + #B(x)5j + 9122(X) + 133(X) if k = 1. 

We then obtain 

-PNs(YJ) k ( PN)Pb(x)-lD(x) - C(x)A(x)-YB(x)]yj 

(2.12) b-(x)1C(x)yj + O91I(x) + /32(X) 

,k 

= (k +1)PNYj + OI1(x) + 12(X)- 

The final stage in this part of the analysis is to compute Pxss(yj). Again we use 
(2.3), 

(2.13) -PxSS(y) = A(x)1PxF(y) -A(X) 1B(X)PNSs(yj). 
From (2.11) and (2.12) we have that 

A(x) 1PxF(yj) = Pxyj + A(x)YlB(x)PNsS(yj) 

(2.14) +12(X) 
if k > 1, and 

A(X)-lPxF(yi) = Px4 + A(x)-lB(x)PNss(yi) 

+OB2(x) + 133(x) if k = 1. 

Hence, 

(2.15) -PXSS(Yj) = PXY4 + 132(X) if k > 1, and 

(PXSS(Yj) = PXYj + 632(X) + RX() if k = 1. 



618 C. T. KELLEY 

We may now compute yjv,1, 

(2.16) NYj+l 
= 

(l k-+ )PNYj + 9f3(x) + 2(x), PXYj+1 =f 2(x). 

The dependency of the estimates in (2.11) and (2.14)-(2.15) on the value of k will be 
used in the proof of Theorem 1.4, but only the weaker of the estimates will be 
needed in the remainder of this proof. 

We use (2.16) to estimate the quantities pi I +I, T?lj + and rj+I- We have 

-k 

Oj+1 ( +1jP + OPIl(X) + #2(X)g #j+l = l(x), 

(2.17) qRy+l = - k(x) + 9Bl(x) + 

rj+' l + rj l k+ ) + p ,8(x) +,lx 

Now, since P = k/(k + 1) + 9f0(x) + f,3(x), if p, 9, and q are sufficiently small, 
we obtain immediately from (2.17) that there is cl > 0 such that 
(2.18) rk,,+l 

- cl(p + 9) < Tj+l < k/(k + 1) + c,(p + 9) < 1. 

In (2.18), rk,j + is given by (1.13). Therefore, there is c2 such that, for all 1 < j < m, 

(2.19) (rk,j+l 
- C2(9 + P))P < P +1 < (rk,j+l + C2(9 + P))P. 

Hence, for 9 and p sufficiently small, we obtain, for all 1 < j < m - 1, P? < P- 
Hence, the intermediate Shamanskii steps are moving toward the root with a rate 
described by (2.18). It remains to show that Ym, the final iterate in the cycle, lies in 
W(p, @, i1), and hence a Newton step may be taken. We proceed, as in [10], [17], [23], 
by first looking at Oj. By (2.16), there is c3 such that 9i < C3p, for all 1 < j < m. We 
demand that 9 and p be small and related so that there is r < 1 such that, 
(2.20) C3p < 

9 pj < rp for all 1 < j <m. 

At this stage we have shown that our next iterate, xl, lies in W(p1, 91, 1), where 
01 < C3p < 0, P1 < rp, 

(2.21) 71 m ax j < 1- c4( + p) forsome C4 > O. 

Hence, for p, 9, and q small, xl = E W(p 9, ). The remainder of the proof uses 
the above formulae inductively. If we let fin = IjPxYnIj/jjPNYnIj and pn = 11,j,1 and 
have xn E W(pn 9On 71n) c W(p, 9, ), where, for 1 l p A n, 

(a) pp < rppI 

(2.22) (b) O4 <( _ 

(c)'qP<71-1+ C4(9P-1 + P1 (c) ~ < - C4(9P-1 + p) 

then (2.22) holds for p = n + 1 by (2.20) and (2.21). In addition, since the sequence 
{ - } has a positive lower bound, we have, for n > 2, 
(2.23) On < 

C3Pn-1' 

and, therefore, the sequence {fn)} converges to zero. Therefore, the sequence qn iS 

bounded by In for p and n sufficiently small, [7], [14], [21], [27]. Note that we have 
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also shown that pn and 6n converge to zero as n tends to infinity. The convergence 
rate, (1.23), in Theorem 1.3 follows from (2.17). This completes the proof. 

Note that, if k > 1, Theorem 1.3 does not include a detailed description of the 
error like (1.17) that leads to a result like (1.18). For k > 1, in fact, the X-component 
of 5:n is in general /32(x,-1) for n > 1. If k = 1, then (1.18) holds by (2.15). 

Proof of Theorem 1.4. The proof of Theorem 1.4 is based on a simple observation. 
If x1 E W(p, 0, -q), then x = xo e W(po, 00, %) and 00 = 01l(x) by Theorem 1.1. 
Hence, Pxko = l,31?,(x) for any a < 1. Hence, PXY1 = f32 la(x). This extra reduc- 
tion in the X-direction is the reason for the special initial iterate. The approach is to 
find a and an appropriate a so that the iterates given by Theorem 1.4 remain in 
W(p, 0, and continue to satisfy Pxx5 = ,, (x). In order to indicate how the 
result depends on whether or not k = 1, we will indicate error terms that are only 
present if k > 1 by multiplying them by (k - 1). 

If we consider the Shamanskii step sS(x, Yl), we find from (2.12) and (2.15) that 

-PNS(x, yi) = (klk + 1) PNY1 + f3l ,,(X) + p2(X) and 

(2.24) -Pxss(x, Yl) = Pxyl + (k - 1)2(X) + /32+c,(X) 

= (k -1):2(X) + 12+,u(X). 

Hence, if we define z by 

(2.25) Z = Y ( + ( k + sS(x, Yi), 

we have 

(2.26) Z = PN41l+a(X) + PX(132+?(X) +(k -1) 32(X)). 

When we add the correction term given in Theorem 1.4 to z to obtain xl, we find 
that 

(2.27) xl = - [CIIS (x, Y1)fl sS(x, Yi)] 
= Xk,aCPNX + PNI3+?,(x) + (k -1):2(X) + f2+o,(X)) 

In (2.27) the quantity Xk a is computed from (2.12), 

(2.28) Xk,a = (kk/(k + j)k+l)l1a+1jjaj. 

Equation (2.28) implies that k5:jj < K I1xI5I+t for some K > 0. 
Hence, we may proceed with the iteration if xl E W(p, 9, ) and Pxx = , (x ). 

We require that the error in the N-component of PNX1j in (2.27) be smaller than the 
main term; this requires that a < a. Now note that Pxxl = (k - 1)132(x) + 32+,,(X)) 
Hence, there is c6> 0 such that 

(2.29) 01 = IIPxX1II/IIPNXII = [(k -1)132(x) + 12+?U(x)]#13_-a(x) 
< C6[(k- 1)I,.,11a + IlXlil+0-] 

Hence, if p is sufficiently small and a < 1, 01 < 9. The condition that Pxxl = 

Bff8,(xl), which is required for the computation of x2, is satisfied by a = 

min(l, (1/a) - 1) if k = 1 and by a = (1 - a)/(l + a) if k > 1. Since a > a is also 
required, we must have a < (F5 - 1)/2 if k = 1 and a < F - 1 if k > 1. Finally, 
to control the n's, one proceeds as in the proof of Theorem 1.3. This completes the 
proof. 
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The remarks made after the statement of Theorem 1.2 about the choice of C and 
a remain valid in the context of Theorem 1.4. We found C = 1 and a = .6 to work 
well. 

3. Examples and Numerical Results. In this section we reconsider the two examples 
from [21]. The first of these is a three-dimensional problem that we use to illustrate 
the behavior of the parameter q in Theorems 1.3 and 1.4. The equation is 

X1 + x1x2 + x2 

(3.1) F(x,x2, x3)= xi 2x + x2. 

x1 + X2 

Here F satisfies the hypotheses of Theorems 1.1-1.4 with N being the (x1, x2)-plane, 
X the x1-axis, and 40 = (0, 0,1). We let xo = (.1, .5, 1) and use the 11-norm. For this 
example, x * = (0, 0, 0), and k = 1. In Table 1 we illustrate Theorem 1.3 for various 

TABLE 1 

m n POn n nm,n 

2 1 9.58663E-002 1.65350E-004 3.50496E-001 2.79134E-001 

2 2 3.59174E-002 1.90626E-006 3.50537E-001 3.39011E-004 

2 3 1.34689E-002 8.09709E-009 3.50537E-001 4.46143E-006 

2 4 5.05082E-003 1.28023E-011 3.50537E-001 1.99774E-008 

2 5 1.89406E-003 7.56883E-015 3.50537E-001 3.22669E-011 

2 15 1.04161E-007 6.68713E-024 3.50537E-001 1.66777E-016 

2 16 3.90604E-008 1.34245E-024 3.50537E-001 3.17671E-017 

3 1 5.38932E-002 1.09717E-004 3.50509E-001 2.50794E-001 

3 2 1.64151E-002 6.93196E-007 3.50536E-001 1.01474E-004 

3 3 5.00147E-003 1.33089E-009 3.50537E-001 5.67678E-007 

3 4 1.52389E-003 7.77993E-013 3.50537E-001 1.05043E-009 

3 12 1.13185E-007 2.49151E-023 3.50537E-001 2.45030E-017 

3 13 3.44861E-008 2.03567E-024 3.50537E-001 2.19280E-017 

10 1 8.64112E-003 3.81655E-005 3.50526E-001 1.30261E-001 

10 2 1.20018E-003 3.85352E-008 3.50535E-001 1.05230E-005 

10 3 1.66707E-004 5.40404E-012 3.50535E-001 9.34826E-009 

10 4 2.31558E-005 1.05259E-016 3.50535E-001 1.30162E-012 

10 5 3.21639E-006 1.51138E-022 3.50535E-001 2.69831E-017 

10 6 4.46762E-007 9.40199E-024 3.50535E-001 4.03188E-017 

10 7 6.20561E-008 6.46542E-024 3.50535E-001 1.36203E-017 
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values of m. We tabulate the following quantities for various values of n: 

(3.2) Pn = lknlk On = IIPx('n)11/I1PN(xn)11, 
Sm,n =I 11_nII/11n-111 rk,m II Tin = II(PN - P0)kn111PNXn11 

We consider m = 2, 3, and 10. Our termination criterion for the Shamanskii method 
is that if I1sN(xn)11 < 10-7, then x ?1 will be the final iterate. This roughly reflects 
the fact that for a kth order singularity, the maximum attainable accuracy will be 
the k th root of machine unit roundoff. For each m the table gives at least the first 
four and the last two iterates. Recall that each iterate requires one Jacobian 
evaluation. 

Note that On and 8mn tend to zero as n increases, as Theorem 1.3 would predict. 
One can also observe the linear convergence rate and the boundedness of q. Note 
that q does not tend to zero. 

We compared the superlinearly convergent algorithms of Theorems 1.2 and 1.4. 
We use C = 1 and a = .9 for the algorithm of Theorem 1.2 and a = .6 for that of 
Theorem 1.4 for two examples for which k = 1. We terminated the iteration as 
follows. As soon as IIsN(Xn)ll +? < 10-7 we took the following modified step and 
stopped the iteration. The reasoning here is that the predicted size of 11in+111 is less 
than the square root of machine unit roundoff. For the algorithm of Theorem 1.2 the 
iteration terminated after eight Jacobian evaluations; for the new algorithm of 
Theorem 1.4 termination took four Jacobian evaluations. 

Our second example is a nonlinear integral equation that arises in radiative 
transfer [3], [22], 

(3.3) H(,u)= 1- .5J aL (+) dv). 

In (3.3), the unknown function H is continuous on [0,1]. This equation satisfies the 
hypotheses of the theorems in this paper with k = 1, dim(N) = 1, and N = 

span(ptH(y)), [3], [6], [19]-[22]. Moreover, if the equation is approximated with a 
quadrature rule that integrates constants exactly, the resulting finite-dimensional 
problem has similar properties. We approximated the integral with composite 
20-point Gauss rules. The sup norm was used. As a termination criterion we use the 
same rules as for the previous example. 

In Table 2 we tabulate the number of Jacobian evaluations required for termina- 
tion as a function of the dimension of the problem and m. The dimension will be a 
multiple of 20, as mentioned above. The initial guess was the vector with all 

TABLE 2 

Number of Jacobian evaluations required for termination 

as a function of m and problem dimension. 

n m = 1 m = 2 m = 3 m = 6 m = 11 m = 21 

20 23 15 12 8 6 5 

40 23 15 12 8 6 5 

60 23 15 12 8 6 5 

80 23 15 12 8 6 5 
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components equal to one. Values of m ranged from 1 (Newton's method) to 21. As 
the table will show, increasing m offers diminishing returns as m gets large. Also 
note that the results do not change as the dimension of the problem increases. The 
linear problems for the steps were solved by obtaining a QR factorization [11] of the 
Jacobian, and using that to find the Newton step and each subsequent Shamanskii 
step. 

As in the previous example, we compared the algorithms from Theorems 1.2 and 
1.4. We found, for dimensions 20, 40, 60, and 80, that the algorithm of Theorem 1.2 
terminated after six derivative evaluations and that of Theorem 1.4 after four. 
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